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ABSTRACT

We propose a general stochastic model for the UT1-LOD system and derive the

corresponding Kalman  filter model. This stochastic model consists of an arbitrary

sum of continous  time autoregressive moving average (A RMA) processes, each

chosen to characterize a different frequency band. The transition matrix which

corresponds to the overall system and the time-dependent process noise covariance

matrix are derived.

Based on the general formulation, several models for UTI were derived from

spectral analysis of the Space 92 UT1 series (Gross, 1993). Using Space 92 as the

reference series, the candidate models were compared based on their ability to

predict UT1 and LOD upto 30 days in the absence of data. These candidate models

were compared with the JPL operational Kalman  Earth Orientation Flter (KEOF)

which assumes a random walk model for LOD (Morobito et al., 1987). The results

of the comparison revealed that autoregressive modeling the 30-60 day oscillation in

the LOD reduces the LOD prediction error by 10% to 20% during the first 30 days of

prediction.



I Introduction

l’he  rotational rate of the solicl earth (length of day) is not constant but undergoes small ancl
unpredictable variations of up to several milliseconds in the length of day (LOU).  Changes
which occur over time scales of less than tivo years are dominated by the exchange of angular
momentum between the atmosphere and the solid earth ( crust and mantle ), while decaclal
fluctuations have been attributed to the angular momentum exchange between the earth’s
liquid core and solid mantle (Hide and Dickey, 1991 ). Using a variety of space-age techniques,
highly accurate observations of these changes have been made for over two decades. l’hese
include very long baseline interferometry (V L131), satellite laser ranging (SLR),  lunar laser
ranging (L LR, ), and more recently global positioning system (GPS). Combining these mea-
surements using the Kalman  filter was first proposed by Morobito  et al. (1987). In general,
the Kalman  filter combines a dynamic model (e.g. autoregressive time series model) and raw,
irregularly spacecl multidimensional observations (e.g. UT1 and polar motion) to produce
predictions and smoothing of the observed time series. Stochastic models for the UT1 and
polar motion were derived from analysis of atmospheric angular momentum (AAM) data
( \Iorobito  et al., 1987). A more recent description of Kalrnan  filtering of earth orientation
data is contained in Freedman et al. (1994).

The purpose of this paper is to continue and improve the stochastic modeling of UT1
and LOD. In particular, we will propose a general stochastic model for UT1 and derive
the corresponding Kalman  filter model. This stochastic model assumes that the UT I is
driven by an arbitrary sum of general autoregressive moving average (ARMA) processes,
each characterizing a different frequency band. This general formulation of the Kalman  filter
allows for experimentation and flexibility in studying different stochastic models for UT] and
1,OD, which in turn depends on the frequency band one wishes to model accurately. The
use of ARMA processes as building blocks for the general stochastic processes is common
in many applications (Brzezinski; Gelb; Haykin). Although each ARMA process is linear,
certain linear combinations have been used to model nonlinear random processes, including
those with power spectrums exhibiting l/j power laws (Kushner,  1982).

We will derive several models for UT1 based on spectral analysis of the Space 92 LOD
series (Gross, 1993). Using Space 92 as the reference series, the candidate models will be
compared based on their ability to predict UT1 and LOD up to 30 days in the absence of data.
These candidate models will be compared with the operational Kalman  Earth Orientation
filter (KEOF) which assumes a random walk model for I,OD (Morobito et al., 1987).

2 Stochastic UT1 model

We will begin by formally defining a continous time ARMA(n,m)  process. An autoregressive
moving average process Y(t) is a process which satisfies the stochastic differential equation

‘“-’ Y(t) + . ..+ al$Y(t)  + aOy(~)  =-$Y(t) + an.l~

/, dm

.mw(q + bm_l~ w’(t) + . . . + F&v(t) + kl~(~)  , (1)
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wher e W(t) is a continuous time ~vhite noise process with known excitation power q. I’he
mathematical theory of such processes can be found in Priestly ( 1981). ;Ye will consider I he
case of m = n -- 1, which implies that the process is ayrnptotically  stable (Priestly, 1981).
In state space fcmm, equation ( 1 ) can be reduced to the first order system

i(t) = Ax(t) + Bw(t) (~)

Y(t) == Cx(t), (3)

where, in general, the matrices A, l?, and C’ are (n x n), (n x 1),(1 x rt) respectively, and the
vector x(t) is given by X~(t) = XI(t),  X2(t) , . . ..Ym(t)). There are infinitely many choices for
the matrices in (2)-(3). We will use the representation (Faddwva,  1959)
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reflect the autoregressive part of the process, while the con-
moving average part. Each process is fully determined by

these two sets of parameters and the excitation power q.

The equation relating UT1 with the LOD is given by

AA(t)
ti(t) = –L(f) = –—-

A. ‘
(’5)

where f-l(t) denotes the UT1, AA(t) denotes the variability in LOD, and A. = 86400 sees.
L(t)  is assumed to satisfy the differential equation

L(t) = Y, + Y~+ .,. + Ym + w~, (6)

where each Y, is an ARMA(n,n-  1) process with excitation power parameter gi, and WL is a
white noise, independent of each Yi, with excitation power qL. Using the first order system
representation of equations (2)-(3), we obtain the following matrix model for the LTT1:

1 /
o -1 0 . . . . . . 0
0 0 c1 C; . . . Cm
o 0 ,41 0... 0=.

A2
. .

Q . . . . . . . . . . . . Am

u -
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0 0
0 1 ‘o” “o” ::: ()
OOBLO. ..O
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0 B.

which will be abbreviated simply as

y(t) = F’y(t) + G) ’’v(t),

(7)

(8)
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where the zero mean white noise vector W’(t) has power spectral matrix QJV.

~Ve will also consider the LOD model

].(t) = YI + }’2+ . ..+ Ym+ WL, (9)

I’he resulting first order system representation can be obtained from equation (8) by deleting
the first row and first column of matrices F and G, and deleting component L from the vector
~. We will show that a similar result will hold for the corresponding Kalman  filter equations.
Thus, the model (9) for LOD is subsumed by the model given in equation (6).

The general solution to equation (8) is given by

y(t) = @(t)Y(0)  + ~’~(t - s) GW(s)(fs, (lo)

where O(t) denotes the state transition matrix. The discrete time system corresponding to
equation (10) is obtained by sampling Y(t)  at times {t~},  for k > 0. The resulting discrete
time system is given by

Ytk+l = @(t&+, – tk)yt, + Uk, (11)

where Yt, = Y(tk),  and Uk is a zero mean vector given by

/

t,+,
Uk = @(fk+l – s) GW(s)(fs, (12)

th

with covariance matrix Qk given by

Qk = ~;k+’ @(tk+~ – s)@wGT@T(tk+l – s)(f.% (13)

Below is a formula for O(t), whose derivation is detailed in Appendix A. Based on this
formula, we derive the resulting form of Qk in appendix B. Assume that the LOD is modeled
as in equation (6), and the resulting system for the UT1 and LOD satisfies equation (8) with
F given by (7). Then the transition matrix Q(t) = eFt is given by

where the vectors Zi and ~. depend on the coefficients of the matrix A i (recall that A i is
the ARMA system matrix which has the form given in equation (4)).

We will consider two cases, which correspond to two different classes of ARMA processes.

Case  1: Ai invertible : In this case, we have

[ 1Zi(t) = CtAi-2  1 + tAi —— eA’t , (15)
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R,(t)  = c’,.+-’ p’ - q (16)

Case 2: K(t) satisfies the equation ~~(t) = hW, (t): In this case, Z,(t) and R,(t)  reduce
to

(
z,(t) =  -h)  ;,;,.,.,::-+’

)(rl+ l)! ‘
(17)

,,

(18)

It is easily shown that det(Ai) = (–1 )n-’(--ao).  Thus, case 1 holds if ao # O. The transfer
function corresponding to the differential equation has no poles at zero. In case 2, the ARM.4
coefficients are all equal to zero except for the coefficient &. For n = 1, case 2 corresponds to
a random walk modeI, whereas for n = 2 it corresponds to an integrated random walk, The
transfer function corresponding to case 2 h~~ poles only at zero. The above formulation does
not treat the case where the transfer function of the differential equation has simultaneous zero
and nonzero poles. In this case, no closed form expression for Q(t) was obtained, although
other approximations for O(t) can be considered.

For A i as in equation (4), the exponential matrix eA’t which appears in equation ( 14)
is well-understood. In most applications the matrix is computed numerically, However, in
order to carry out the integration which appears in equation (13), it is desirable to have an
explicit representation of eA*C as a function of time. If the matrix A i has simple eigenvalues
(ie. of multiplicity one) given by {Al, ...,~~}, then eA1’ is given by eA*’ = V(t)[V-l(0)],  where
V(t) is given by

(19)

Explicit representation for eA”~ for the more complicated case of eigenvalues  with multiplicity
greater than one is derived in Hamdan  (1993). For the second c=e where the process ~(t)
satisfies ~(t) := &Wi(t)t  the corresponding matrix eA1~ is given by

1

0

0

.0

t

1

0

t

1

$ ““
(20)

Finally, we note that for L(t)  given by equation (9), the corresponding transition matrix
@(t) is obtained from the matrix of equation (14) by deleting the first row and first column.
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In the next section, we will apply  the above forrriu]ation to specific autoregressitr  [llodels
of LOL) obtained by analyzing the power spectrum of Space W 1,01) data.

3 Examples of LOD models

One of the most popular methods for constructing AR,MA models is based on spectral anal-
ysis of the observed times series. The frequency domain characterization of AR\lA models
is detailed in Priestly (1981 ). In our experimcmt,  an optimally smoothed LOD series (Figure
1 ) derived from the Space 92 (Gross, 1993) combination of space-geodetic observations was
used to estimate the LOD spectrum. Since the uncertainty of the LOI) series drops below
0.04 m.sec after 1985, only the data from 1985 to 1992 was used to estimate the spectrum.

I’he effects of solid earth tides (Yoder et al,, 1981 ) and long period (fornightly and
monthly) ocean tides (Dickrnan,  1993) were removed from the time series. We also removed
from the data the annual and semi-annual variations by using the following seasonal model:

LOL) ,c~,OnO, = 0~880co~(2nt)  + ().17 f)4~zn(2mi)  – 0.1433 co~(4mt) – 0t2569~i~i(4*~),  (21)

where  ~o~seasonai  is in m= and ~ =  (JD  - 2447527.5)/365.2422.  This  model  was derived
from approximately 30 years of LOD data which was provided by Gross (private communi-
cation, 1993). Since we are interested in LOD variability at periods much less than one year,
a one year moving-average was removed from the series. The approximate spectrum of the
remaining series was computed using the spectral analysis procedure described by Eubanks
et al. (1985) with a 15 point spectral smoothing (Figure 2).

Based on the estimated spectrum (Figure 2), two stochastic models for the LOD were
constructed. The first, which will be denoted as Model 1, is the sum of a random walk process
(RW) and a first order auto-regressive process (AR1).  This corresponds to the general model
of equation 9, with m = 2. That is,

L(t) = Yl(t) + Y~(t), (22)

where the RW process Y1 (t) satisfies the equation

Yl(t)  = Wl(t), ql = 3.0 x 104  rn9ec2/day3, (23)

and the AR1 process Y2(t) satisfies the equation

y2(t) + 0.(177 Y2(t) = Wz(t),  qz = 3.(I x 10A msec2/day3. (24)

For i = 1,2, qi is the excitation power spectral density of the white noise process Wi(t). For
the AR1 process in equation (24), the constant 0,077 corresponds to a dissipation time of 1.3
days. The power spectrum corresponding to the process L(t) given by equations (24)-(26)
is shown in Figure 2.

The second model, which is denoted as Model 2, is the sum of Model 1 plus a second order
auto-regressive process (AR2),  which attempts to model the 40-50 day oscillation exhibited
by the LOD spectrum, The model is given by

L(t) = Yl(t) -t Y2(t) + K(t), (25)
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where Yl(t) and Y2(t) are as in equations (24) a[ld (2.5), but \vith ql == S.0 x 10–i 7nscc2\doY3

and q2 = 9.0 x 10-t nzsec2/day3.  l’he process };(t)  satisfies the equation

~~(t) + 0.133 ~3(t) + 0.0366}<(t) = Ilj(f),  q~ = 2.25  x 1 0 – ’  msec2/days31 (26)

which corresponds to a dissipation tilne of 15 days and a resonance period of 3,5 days. “l’he
power spectrum of the process ~,(t) as given in equation (27) -(2S) is shown in Figure  2.

The current JPL Kalman Earth Orientation filter (KEOF) uses the following random
walk model for the LOL) (Morobito et, al., 1987):

~(t) == WL(t),  qIJ =: 0 .0036  msec2/day3. (27)

‘l’his is a special case of equation (6) with m = O. This model will be refered to as hlodel (),
The corresponding power spectrum is also shown in Figure 2.

Using the KEOF and IRIS (International Radio Interferornetric  Surveying) Intensive
single-baseline VL, BI data, the above models for LOD were compared based on their ability
to predict LOL) in the presence of long data gaps. The IRIS Intensive VL131 dataset spanned
t llree years from october  1989 to the end of 1992, The sub-daily tidal effects were removed
using the model of Herring (1994), The effects of the solid earth (Yoder et al., 1981) and
ocean tides (Dickrnan,  1993) were also removed, as were the seasonal variations based on the
model in equation (23). Systematic differences in terms of relative bias and rates between
the IRIS Intensive series and the UT 1 series of Space 92 were also removed. In order to
test the above models, forty gaps were inserted in the dataset, each of length thirty days.
I-Jsing each model separately, the KEOF forward filter series is compared with the Space 92
series as described in this section. In the absence of data, the KEOF forward filter series is
equivalent to the propagation of initial data thirty days into the future using the dynamical
models described in section 2. The ability of the model to predict LOL) is measured by the
root mean square(RMS)  of the difference between the forward filter series during the data
gaps and the Space 92 series. The RMS of the prediction error for day i is

RMS(i) =
r
~ ~ ( ped(i,n) - Space92(i)  )2 ,l<i <30, (28)

n - l

where pred(i,  n) is the prediction of LOI) for the ith day of the n~h gap, 1 < n < 40,

In order for the prediction error to be reinitialized before entering each data gap, two
successive gaps are separated by ninty days of daily data points. Consequently, the difference
between the KEOF forward filter run and Space 92 decreases to a small level prior to entering
any of the data gaps, Moreover, this initial error is approximately the same for each of the
I,OL) models used.

4  R e s u l t s

T}le Rh[S function for each LOD model is plotted against time (30 days) in Figure 3. The
corresponding RMS function for the UT1 is plotted in Figure 4. Compared with the LOD
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prediction error of the KEOF model, both JIodel 1 and  Ifocfel 2 reclucr  the 1,01) prcdictio[)
error by a factor of approximately 10(% (day 1 ) to 20(Z (day S). l’he corresponding reductiotl
of tile UT1 prediction error varies frorll 13(70 (day 1 ) to 237( (day 8). I{ ’or the first  1,5 days
ill prediction, the reduction of the 1,01) prediction error in \lodel 2 is approximately 3%
to 5% greater than that of 510c1el 1. For the secotld  15 days of prediction, the situatiorl  is
reversed \vith roL]ghly  t}]e same variability, I’he reduction of the UT1 prediction error in
\lodel  2 is approxinlate]y  O’?lo to 8’70 greater than  that in }lodel  1. I’bus, \fodel  2 performs
as well or better than ~lodel  1 during the first 15 days of I.OD prediction, and during the
first 22 days of UT1 prediction. l’his  suggests that modeling the 40-50 day LOD oscillation
improves LOD predictions up to 15 days, and improves UT1 predictions up to 22 days.
Compared with the KEOF model (Model O), the major improvement in the predictions can
be attributed to the AR1 process, which is present in both .Model 1 and lModel  2,

in Figures 5a, we have plotted the actual LOD prediction error (RMS function described
above) for Model O along with the LOD error as predicted by the Kalman  filter. A similar
plot for the UT1 prediction error is shown in Figure  5b. The corresponding errors for Mode] 1
and \fodel 2 are shown in Figures 5c-5f. For the first 16 days, the actual and predicted LOD
errors corresponding to Model O and .Model 2 (Figures 5a and 5e) coincide to a great extent.
For the remaining 14 days, the predicted error for Model O overestimates the actual error
by as much as 0.1 msec., while the errors corresponding to Model 2 continue to track each
other. The predicted error corresponding to hfodel 1 (Figure 5c) begins to underestimate
the actual error after only 8 days of prediction. The largest difference is approximately
0.05 msec. (day 13), and the two errors coincide again after 24 days of prediction, ~’he
difference between the predicted and actual UT1 errors corresponding to each model show
similar behavior (Figures 5b, 5d, and 5f).

5 D i s c u s s i o n

As stated in the previous section, the improvements in the LOD and UT] predictions as
exhibited by Model 1 and Model 2 can be attributed primarily to the AR1 component of the
LOD models, which is not present in Model 0, It also appears that the initial error growth
obeys a t*12 law for the first 15 days (t < 15). This is the error growth law of a random walk,
which is precisely the assumption of Model O (Figure 5a). This growth law is also reflected
by Model 2 (Figure 5e) for at least the first 10 days. However, the actual error begins to
decline after 18 days and then begins to grow again after 26 days (Figure 3). Model 2 (Figure
5e) anticipates this behavior in error growth early on and thus tracks the actual  error more
closely than the other two models. It might therefore be suggested that the change in the
actual error growth is due to the 40-50 day oscillation which is accounted for in Model 2. On
the other hand, what we refer to as the ‘actual error’ in this paper is the observed error. It is
not clear how accurate the observed error is with respect to the theoretically true error. The
observed error (Figure 3) is a statistical error based on 40 ensembles of 30 day predictions
using Space 92 as a reference series. Other experiments (Freedman et al., 1994) revealed
similar results for Model O, but we know of no other results for ARMA models such as lModel
1 and Nfodel  2.
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l:or practical considerations, wre regard the first  1.5 days of lJrediction as being m o r e
ilnportant  than the second 15 days, as our ~]redictions  are currently done on a twice a u.cck
basis. AS a result, the parameters that were chosen for >lodel 1 and \lodel 2 \vere baseci  on
inspection of the estimated spectrum of the Space 92 series. In general, optimal estimation of
.41{A1. A parameters based on data can be achieved, for example, using the extended Kalman
Filter. However, in addition to being more costly to implement, such optimal fitting of the
clata may not reflect our preference for the first 1,5 days of prediction,

In conclusion, the main result from our I,OD modeling experiments is that 1,01) is dom-
inated by an AR1 structure in addition to a random walk structure at long periods. ,4dcling
the 40-,50 day oscillation to the AR1 and random walk only slightly improves LOD predic-
tions for the first 15 days. }Iowever,  accounting for the 40-50 day oscillation seems to yield
the most accurate predictions of the formal errors corresponding to LOD and UT1 predic-
tions, Based on the results of our experiments, Model 2, as described in this paper, seems
to be the most appropriate model for 15 day predictions of I,OD and UT1.
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the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
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6 Figure Captions

E’igure 1: Space 92 I,OD series with the seasonal model and a one year moving average
removed. Daily points are plotted from 1991-1992 only, but the spectrum in Figure 2 is
computed from daily Space 92 points ranging from 1985-1992.

Figure 2: Fktimated  power spectrum of the Space 92 LOD series (using the procedure in
Eubanks et al,, (1 985) with a 15 point spectral smoothing) along with the theoretical power
spectral densities of Model O, Model 1, and Lfodel  2. .Note:  ‘The spectrum is computed from
Space 92 data ranging from 1985-1992.

I~igure 3: R.MS of LOD prediction error corresponding to 3 models. The  error is computed
as (Space 92- LOD forward filter run),

Figure 4: RMS of UT1 prediction error corresponding to 3 models

Figure 5: Predicted and actual Standard deviation of LOD and UT1 prediction error (as a
function of time) corresponding to Model O, Model 1, and Model 2.

9



o.

0.

N -0.2m

Ea
f% -0.4

.0.6

-0.8

Figure 1 - Space 92 LOD series with seasonal
model and one year moving average removed

~~~
o 1 I

50 100 1 I150 200
r

250 300 350 400 450 500Tim. In daya since Jan 1, 1991



2

1

0

-1

- 2

“ 3

-4

-5
-2.

Figure 2 - Power Spectrum of Space 92
LOO series and LOD ARMA models

‘~–~-r-

“.

‘ L O D  s p e c t r u m

-- - M o d e l  O
- - - - - Model 1

- - - . -Mode l  2

.3

LOGIO(Frequency in cycles per day)



0.3(

.

0.00

Figure 3 - LOD Prediction error RMS vs. day number

Model O (LOD)

Mcdel 1 (LOD)
Model 2 (LOO)

day number



Figure 4 - UT1 Prediction error RMS vs. day number
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Figure 5a - Actual and estimated standard
deviation of LOD Prediction error (Model O)
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Figure 5C - Actual and estimated standard
deviation of LOD Prediction error (Model 1)
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F i g u r e  5d - Actual and estimated standard
deviation of UT1 Prediction error (Model 1)

5r——————
.— —.—

4

3

2-

1 -

0

Model 1 actual error

Model 1 estimated error

O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
day number



0.3(

C).2:

0.2C

0.15

0.10

0.05

0.00

Figure 5e - Actual and estimated standard
deviation of LOD Prediction error (Model 2)

——

4

“ Model 2 actual error

~ Model 2 estimated error

~~ 1 I

O 2 4 6 8 10 12 14 16 18 20 22 24 26 2~70
I 1 I I I

day number



c
o,-
;.-
-0
al
L
n

5

4

3

2

1

F i g u r e  5f - Actual and estimated standard
deviation of UT1 Prediction error (Model  2)

-— ——

0 I 1 1 I 1 1 I I I T I 1 I r 1

Model 2 actual error

Model 2 estimated error

O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
day number



Fig.  re S .  .  Actual  .nd eetlmmt.  d .I.  ndard
daviatlon  01 L O O  P,, diet,  on .,,.,  <Mod,,  O)

3*O  — — – - – – — -  -.

1

—

035

025-

029-

0!5-

0!0.

005-
7- — U&+ o tam  90.

MC-s+  o “I,n,wa  w..

-—-. . --—

3X

o 2s

Oa

015

010

003

Ow

03(

02!

021

01$

010

005

Om

Flguro  Sc . Actual ● n d  anllmated  8tandard
devlttlon  of L O D  Predlcllon  ● r r o f  ( M o d e l  1 )

—— —————

Flgum  Sa . Actual ● nd ● atlmatod .Iandard
dawlatlon  et  L O O  Prodlctlon  ● r f o ?  (Modbl 2)

———

Ftgu~*  $b Actual  and  ,,t$mated  ,t,  nd,  rd
00  V1*tt On O f  u T 1  P,,  d,cll  On error (M OCI,  I O,

,  ~- .

f’”!

Flgura  Sd . Actual ● nd ● #llmalbd standard
dbvhtlon  of UT1  Pr8dlctlon  ●  r m r  (Modal  1)

.— — ._

I

I  --z+

Flour.  St . Actual ● nd ● otlmatad atandnrd
dovlatlon of UT1 Pradictlon  ● rror  (Model  2)

day  numb.,



Appendix A: I’ORMULATION OF THE RANDOM EARTH ROTATION MODEL

The equation relating the UT1 with the 1,01) IS given by

(1)

where L-(f)  denotes L’T1, A.i(t) denotes the variability in LOD,  and .40 == 86400 sees. ‘l’he 1,01) is assumed
to satisfy the differential equation

L(t) = Yl(t) + Y2(t) -t . . . + Yin(t)+ l“v~(t)  , (2)

where each of the Yi’s belongs to the set ARM.A(n,  n-1) and WL is white noise. As in Section 2, since each
}’i belongs to ARM A(rr,n-1),  the nth-order differential equation that is satisfied by H can be reduced to the
first-order system

~(t) = AiXi(t) + BikVi(t) Xi(t) = (X~(i!)  X*(t).. ..Y~(t))~ (3)

YI =  CIXI (4)

where /ti, B i, Ci are of the form given in equation (4) of Section 2. Equation (4) can be substituted into
equation (2), and the resulting equation, combined with equations (1) and (3), can be written in state-space
form as follows:

u

:1 Ii o –1

x ,
0 0
0 0

X2 = ,

.+;, o . . . . .

2;
o ,..
A2

. .

. . .
0

. .

l’he system (5) can be abbreviated m

partitioned = F = F1 + F2 where

u“
L
xl
X2 +

Xm .

Y= F’Y+GW,

o 0 . . . . . . . .
0 1 0 0 0
O O B1 o ::: 0

BP

o B.

o
WL
WI
W2 (5)

w“, -

where F and G are (mn + 2) x (mn + 2), and Y, W are (mn + 2) x 1 column vectors. The matrix F can be

,F2=

o 0 0 0 . . . ...0
0 0CIC2. ..CW

Al
A2

Am

(6)

[
o -1 0 . . . . . .
0 . . . . . . . . . . . . 0

1:Fl= ;

0 . . . . . . . . . ...0

The following properties will be used:

It will be shown in P3 that F,m has nonzero entries in the same location as Fz. Also, Fl” = O, so we need

only show that F2F1 = O. Thi;  is easily seen by direct computation.

1



P3/ For m >2, F~” has nonzero entries in Ihc same location M Fz. ,1 forr]iula  for ~’~ will be useful In the
analysls  to come, and it WIII show that P3 holds for 771 > 2. \t’e first assurl]e that A, is irlvertlt)]c.

o 0 . . . . . . . . . . . . . ...0

: ~~~ 10 0 F’~’-l.  .P:. l:-l
.4 yqn .

.-t?

A;

where  the row vector Pim = CiA~ for m ~ 0.

The above formula is easily proven by induction.

P4/ (Fl + F2)n = FIF;-l + F; n~l.

Proof (by induction):

=o+Fl F2+o+F~=Fl F*+ F;.

Assume

(Fl + F2)”-1 = F1 + F~-2 + F~-l. Then

(F1 + F2)(F1 + F2)”-1 = (Fl +F2) (FIF;-2  + F;-’)

Using PI and P2, P4 follows directly.

Using P1 through P4, the transition matrix O(t) = exp {(F1 + F2) t} can now be derived,

exp{F1  + Fa}t = ~ $(F1 + F2) ”
n=O  ‘

= I+(F1+F2)t+~  ~(F1+F2)n
n=2

= Z+(F1  +F2)t+~ ~(FIF;-l) +5 JF; .
n=2 n=2

(7)

(8)

Since the summations start at n = 2, we can use the formula in P3 to compute Fn-’. The expression for
F1 Fn-’ for n z 2 is given by

1:
0 0 -CIA~-2 . . . . ..–2m A..-2
o 0 . . . . . . . . . . . . . . . . . . . . . . . . ...0

FIF; -l = ; ‘1. .o . . . . . . . . . . . . . . . . . . . . . . . . . . . o
2



After summing up from n = 2 to WI, the nonzero clernents of FI l’;- 1 wi]l be of the form

–c, ~ ;; .4; -2 z C,.4J2 [1+ .4, t –e’4”]
n=2

E;quation (7) can now be rewritten a.q

(9)

(lo)

where Ml can be computed using (9). Using the formula in P3 and bringing the summation inside the
nmtrix yields

ro 0 . . . . . . . . . . . . . . . . . . . . . . . I
O 0 RI R2 . . . . . . . . . . . . ...&

~A, t_l
~Cj;= ~Aat _ I
n=l

‘ .

~Amt _  I
1’

where the row vectc)r & = CiA~ 1 [et At — 1] Finally, (10) becomes

1 -t Z1 Za . . . . . . . . . . . . . ..zm

I ~~~ 1

0 1 RI R2 . . . . . . . . . . . . ...&
~A, t

eAd
e(r,+r?)t  =

‘ .

“.

,.

eA,nt

(11),

where Z i = C’, A,T2 [I+t Ai —etAl],  and & = ciA~l [etA, — 1]

We now consider the second case, in which the coefhcients  of Ai satisfy oi = O, for i = O, 1, . . . . n – 1, and
b j = O f O r j = l , 2 , . . . , n - 1. The differential equation becomes $# = bow(t), and the matrix Ai becomes

(12)

For n = 1, the model is a random walk; for n = 2, it is an integrated random walk. For this clrs9 of
excitation models, an equation similar to (11) will be derived.

The matrix A of the form (12) haa the following property:

A k = {ak(i, j)} has entry 1 if j = 1 + k and entry zero otherwise. (13)

Hence,  if A is an n x n matrix, then An = O. Therefore, the matrix

(14)

3



is given by

and the matrix

is given by

1 t < $ . ,;:-;),-— .._.

0 0 1 ’ .

t
o 1

o $ $ . . . . . . . . . . . . . . .

o . . . . . . . . . . . . . . . . . . . .
t3/3!

.t~/2

‘l’he quantity 21 appearing in ( 11) is given by  –Ci  ~~ # Ak-2, where Ci = (ho, O, .
k=l

is given by

Z i = –b.
(

tz tt tn+l
~~j”’”~jj)

The expression ~ appearing in (11) is given by

By a similar argument as above, it can be shown that

Appendix B: Computation of Process Noise Covariance Matrix

(15)

(16)

,0). It follows that Zi

(17)

(18)

( 19)

In this section we will derive an expression for the process noise covariance matrix Qt, which is given
by (see equation 13 of section 2)

I
~b+l

Qk = @(tk+~ - (20)T)G @ GTOT (tk+l – T)ch.
lb

In the process of evaluating Qk, certain expressions appear repeatedly. One such expression is eA~QeATt,
where Q is an n x n matrix that has entry zero everywhere except Q(n, n) = q (i.e., element (n, n) has nonzero
entry q). Let the eigenvalues of A be numbered {Jl, A2, , . . . ~~}. Some of the eigenvalues may be repeated,
in which case they should be numbered successively. Denote the nth column of eAt by Vn. Then, by direct
calculation, it can be shown that

eA’Q e
ATf  ~ qvn,#, (21)
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which is an n x n matrix

It is known that for .4 of the form given by equation (15) of section 2, e ‘f = V(t) V-l(0), where L’(O)
contained eigenvectors  or generalized eigenvectors, depending on the distinctness of the eigenvalues of matrix
A (Faddeeva,  1959). The following analysis assumes  that the eigenvalues are distinct. The general case of
cigenvalues with multiplicities was treated by Hamdan  ( 1993).

Let column n of rriatrix V- ‘ (O) be given by v,, = {<1,  <2,  . . ..(~}T.  If Vn = {P I, P2, . . ..Pn  ,} then the
ith entry of Vn, 1 < i < n, k given by

It follows that element (i, t’) of matrix eA~QeA~ is given by (note: V(l,  j) = e~~t, V(l,  s) = e~’t)

(23)

Thus, element (i, t’) of matrix ~~kb+]  eAtQeAr~dt  is given by q ~t~+’ ~i~fdt) which is essrily evaluated

~~y letting At == t~+l – ft, we may rewrite Q~ w

Q~ = /A: @(8)~QwGT@T(~)d8, (24)
o

where Qw is wsurned  to be of the form diagonal (O, qL, Qwl, . . . , Qwm ), where  q~ is a scalar and each
n x n matrix Qw,, is of the form QW, = diagonal (qi, O, . . . . O). The matrix G is given by G = diagonal
(O, 1, B, , . . . . %), where the Bi’s are as defined in equation (4), Section 2. It follows that the matrix
Q = GQw@ is given by

Q = diagonal (O, q~, Ql, . . ..Q~). where Qi = diagonal (O, O,..., gi). (25)

The transition matrix @ will be partitioned as follows:

M3 = (mn x 2) zero matrix, M 4 = diagonal (eA”,.. ,eAmt)  is mn x mn.

Let Q be partitioned as

(26)

where

[ 1
0 0al = o qL 2X2 ‘

5
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CY2 = ‘2 x  m n  zero nlatrix,as = (a2)T  , and a4 = dlwmal(Ql,.  .Qm)  is  (r71n x  m n )  Using t h e  above
partitions, the matrix @Q@T  will be given by

(28)

(29)

w}]ere

WI(t)  = .l’flCxIAf~  + MzCr4M~ ;2 X2.

~z(t) = kfI@I@ + M@41kf: = kf2CU&i: ;2 x mn.

IY3(t) = M4cr4M; = w;(t)

U14(t) = M4a4Mf ; mn x mn,

Each one of the abc,ve matrices will be integrated separately. Ur4(t)  is actually given by 114(t) = diagonal

(
ATteAlr Q1e , . . . . . ..eA~r Qn. e

)
‘~; , The integral of this matrix is of the form given in equation (27). W2(t)

is the transpo~ of U~3(t),  so only IJl (t) needs to be analyzed.

The first term appearing in VI (t) is given by

[
qLt2

M1al M~ =  _qLf ‘;:t
1

where qL = E (W:). The second term appearing in VI (t) is given by

I,et L’ (w;) = q, and recall from Equation ( 16)-(17) of Section 2 that

Zi = CiA~2 (I+ Ait – eA1~)

& = CiA~l (eAor -1)

whenever A,- 1 exists. When A,~l does not exist, Zi and & are given by

Case 1: Assume A is n x n and A-l exists. Let K = CA-2. Then

{ZQZT =K Q + t (AQ + QAT) + t2A Q AT + eA’Q (eAt)T

- (eA’Q+  [eA;Q]T) -- (teAIQAT  + [teAIQAT]T)}KT

Integrating from t = O to At,

/

At

{
ZQZTdt = K QAt + ~ (AQ + QAT) + ~AQAT

o

+

[(A-l ~AAt – ]) Q+ Q (eAA’  _ I)T  A-T
1

[ ( A-’At - A-2) ~AAt  +A-2] QAT - AQ [(A-’At - ~-z)eAAr  +A-2]T

I

At

}

e A ’Q (eA~)T dt KT .
0

(30)

(31)

(32)

(33)

(34)

(35)



I,et L = C.A!-’ , SC, that R = L (eA’ – I). Thus,

{
RQRT = L e~’Q(e4’)T - (eA’Q  + (eA’Q)T)  + Q} IT

and

I
A t

RQRTdt = I,{AtQ – (A-l [eAAt - I] Q+ Q(eAAt _ {)TA-T)
o

I
At+

1
eA’Q (eA’)Tdt LT

o

LJsing  the same notation,

Z Q RT = K (1 + At – eA’) Q (eA’ – ])T LT

{
= K eA’Q + (eA’Q)T – Q - CA’Q (eA~)T

+ AQ (t (eA~)7 - t)} LT

(36)

(37)

which implies

J
At

{
ZQRTdt = K A-l (eAAt - I) Q+ Q (eAAt _ ])= A-T

o

- QAf  +AQ [( A-lAt - A-2) eAAt +A-2]T
At

-  AQ~ -
I 10 eAt Q (eAT)~ dt L T . (38)

Case 2: A -1 does not exist.

Given that Q(i, j) = O except when i = j = n, Q(n, n) = q, and given the form (17),(19) (section 2) for
Z and R, it follows that

J
At 2n+3

ZQZTdt =  –  ‘biAi –—
0 [(n + l)!]2(2n + 3)

J
At 2n+l

RQRTdt = ‘bgAt
o [n!]’ (2n + 1)

J
At 2n+2

ZQRTdt = — ‘qb;Ai
o (n+ l)!n!(2n + 2)

(39)

(40)

(41)

This concludes the integral of j~r ~l(t)dt.

Next, an expression for JOA~ W2(t) dt will be generated. ‘J2(t) = M204M~ is a 2 x mn matrix that is
given by

Wz(t) =
[

ZIQ1 (eA’’)T  . . . . . . . .. ZmQm (eA-f)T 1RIQ1 (eA’t)T  , . . . . . . ..&Qm (eA*t)T  “

For integration, first it will be assumed that A-1 exists.

(42)

ZQ (eA’)=  = K {Q+ AQt - eAtQ} (eA’)T
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After some algebra,

/

Al

ZQ (eAf)Tdt = K {Q(eAA’  -
0

J
At

~Ai— Q
o

{)7’ .4-7 + .-IQ [(A-l M – A-2) ~A~’ +. @’

}

(43)
eA’)T’ dt

Similarly, after some algebra,

J
At

RQ(eA’)Tdt  = L {J 1

“eA,Q(eAf)T~t  _  Q(eAA~  _ z)T#T
0 0

For the case in which A-1 does not exist, the (2 x n) matrix [ 1ZQ (eAt)T

RQ (eA’)T ‘educes to

[

–bo&

H

~“-1 ~r.-aoq pi- ~y..~ 1
0 bO $

,.-1 ,.-2

F=7 G=7”’’”’”~  1 1
‘This is a 2 x n matrix. The integral of element (1, j) is given by

– boq At2n-j+2—-— .- .—. .——
(n+ l)!(n - j)!(2n - j+ 2 ) ’

while the integral of element (2, j) is given by

b oq At2n-l+i
n!(n - j)!(2n - j + 1)’

This concludes the integral ~oAt V2(t) dt, u well as the integration of
[ 1
$ ;: (t) .
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